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A B S T R A C T   

Background: How to predict the cognitive performance of Alzheimer’s disease (AD) and identify the informative 
neuroimaging markers is essential for timely treatment and possible delay of the disease. However, incomplete 
labeled samples and noises in neuroimaging data pose challenges to building reliable and robust prediction 
models. In this paper, we present a model named Low-rank Sparse Feature Selection with Incomplete Labels 
(LSFSIL) for predicting cognitive performance and identifying informative neuroimaging markers with MRI data 
and incomplete cognitive scores. 
Method: We propose a sparse matrix decomposition method to decompose the incomplete cognitive score matrix 
into two parts for recovering missing scores and utilizing incomplete labeled data. The former is the recovered 
cognitive score matrix without missing values. To make the recovered scores close to the real ones, a manifold 
regularizer is devised to fit the label distribution for capturing the label correlations locally. The latter is a 
ℓ1-norm regularized matrix which represents the associated errors. Next, a low-rank regression model that 
regards the recovered matrix as the target is developed to increase the robustness to noises and outliers. Besides, 
ℓ2,1-norm is introduced into the objective function as a sparse regularization to identify the important features. 
Results: Experimental results demonstrate that LSFSIL achieves higher performance and outperforms several 
state-of-the-art feature selection approaches. Moreover, the neuroimaging markers selected by LSFSIL are 
consistent with the previous AD studies. 
Conclusions: LSFSIL is effective in informative neuroimaging marker identification for cognitive performance 
prediction with incomplete labeled data.   

1. Introduction 

Alzheimer’s disease (AD), the most prevalent cause of dementia, is an 
irreversible and progressive neurodegenerative disease [1]. Recent 
studies have shown that approximately 46.8 million people were living 
with AD in 2016 in the world [2] and the prevalence of AD may reach 
over 100 million in the world by 2050 [3]. In advanced stages, due to the 
massive death of cells in brain, patients are unable to perform even basic 
tasks required for daily living, resulting in a need for constant moni-
toring and care [4]. Unfortunately, there is no effective cure for this 
debilitating and ultimately fatal disease until now [5]. However, the 
timely AD diagnosis and treatment in its early stages can defer or stop 
the disease progression [6–9]. Therefore, various cognitive tests have 

been designed to help the diagnosis of AD and the evaluation of treat-
ment effect, including mini-mental state examination (MMSE) [10], AD 
assessment scale-cognitive subscale (ADAS-Cog) [11], clinical dementia 
rating-sum of the boxes scale (CDR-SB) [12], and so on. These tests focus 
on quantitively measuring the cognitive status of patients based on the 
performance in a series of tasks or questions, such as identifying a pic-
ture of an animal and counting backward [13,14]. They evaluate 
particular aspects in one or more cognitive domains, such as memory, 
language, and the ability to recognize objects. For example, MMSE [10], 
which requires about 10 min to administer, assesses cognitive function 
in the areas of orientation, memory, attention, calculation, language, 
and visual construction. ADAS-Cog [11] is a detailed cognitive test 
covering all cognitive areas in dementia. It takes about 40 min to 
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administer. CDR-SB [12] is used to assess both cognition and 
basic-instrumental activities of daily living. It is relatively easy to 
administer and requires only a few minutes to complete. Considering 
that different cognitive tests have different sensitivities and specificities 
and each test evaluates particular aspects in cognitive domains, clini-
cians usually combine multiple tests for cognitive evaluation [14]. 
However, conducting cognitive assessments by clinicians is a highly 
time-consuming task and can only reveal the current cognitive status but 
is not able to predict the cognitive trajectories in the future. Therefore, 
there has been a growing interest in building machine learning models 
for estimating current and future cognitive scores based on brain mag-
netic resonance imaging (MRI) data [5,9,15,16]. 

However, the high feature dimensionality of MRI data poses a big 
challenge for existing models. The number of features extracted from 
MRI usually reaches hundreds to thousands but only a few features are 
related to AD [17]. As a result, feature selection, which aims to select the 
most discriminative and informative elements from the original feature 
set to represent the data and reduce feature dimensionality, is essential 
for cognitive score prediction [18]. Recently, an abundance of feature 
selection approaches for cognitive score prediction have been proposed 
[6,19–24]. Most methods build linear regression models based on the 
sparsity-inducing norm on the projection matrix to select relevant and 
discriminative features. For example, Zhou et al. [19] formulated 
cognitive score prediction as a multi-task learning problem and selected 
features with ℓ2,1-norm and ℓ1-norm. Considering that different cogni-
tive scores may prefer different brain regions, Cao et al. [20] developed 
a generalized fused group lasso to model the relations among cognitive 
scores and MRI features based on prior knowledge. Zhang et al. [24] 
presented a ℓ2,1-norm regularized regression model to select features so 
as to perform AD classification and cognitive score prediction jointly. 
Despite the promising results achieved by the existing studies, there are 
still two main limitations, regarding the output labels (cognitive scores) 
and input features (MRI features) of the model, respectively:  

1) For output labels, the aforementioned methods assume the cognitive 
scores of all subjects are complete. However, some subjects may not 
be assessed as scheduled due to various reasons and miss the ground- 
truth cognitive scores at some time-points. For example, among the 
814 subjects in AD Neuroimaging Initiative (ADNI) dataset, only 534 
subjects own full MMSE scores for all time-points during the two- 
year follow-up period. Existing models usually discard the subjects 
with incomplete cognitive scores, which makes the overfitting 
problem serious and degrades the accuracy and robustness of the 
prediction models [25]. Hence, dealing with the data with incom-
plete cognitive scores is of great significance in cognitive score 
prediction.  

2) For input features, MRI data may be affected by a wide variety of 
noises in the procedure of acquisition and preprocessing [26]. For 
example, we usually perform image segmentation, i.e., partition an 
image into distinct regions, and then extract the features of these 
regions for the following tasks. However, the segmentation may fail 
due to the noises in MRI, leading to the inaccurate partition of some 
regions. As a result, there exist features and samples which are 
contaminated and unsuitable for the following learning tasks. Most 
previous studies adopt ℓ2 or F-norm to characterize prediction er-
rors, which are sensitive to noises and usually fail to build reliable 
models [27,28]. 

To deal with the aforementioned limitations, we present a model 
named Low-rank Sparse Feature Selection with Incomplete Labels 
(LSFSIL) to select informative MRI features for predicting cognitive 
scores at multiple time-points. For employing the incomplete labeled 
samples, we decompose the incomplete cognitive score matrix into two 
parts: a recovered cognitive score matrix and a sparse error matrix. The 
former is assumed to be the recovered cognitive score matrix without 
missing values and is regarded as the regression target while the latter is 

a sparse matrix that corresponds to the recovery errors. In this way, all 
available samples can be utilized for training, which leads to a sub-
stantial number of samples and yields the proper modeling of the 
intrinsic relations between MRI features and cognitive scores. Here, a 
manifold regularization term is designed to capture the cognitive score 
correlations locally and guide the decomposition of the incomplete 
cognitive score matrix by ensuring that similar subjects have similar 
recovered cognitive scores. Moreover, to improve the robustness to 
noises and outliers in MRI data, we design a low-rank sparse regression 
model which adopts the nuclear norm as the basic metric of the loss 
function. An effective optimization algorithm is developed to solve the 
optimization problem. The main contributions of this paper are sum-
marized as: 

1) We develop a low-rank sparse feature selection model with incom-
plete labeled MRI data which can select informative MRI features for 
predicting multiple cognitive scores at multiple time-points. 

2) To employ incomplete labeled subjects, a sparse matrix decomposi-
tion method is designed to recover missing scores. To preserve the 
local neighborhood of the cognitive scores and capture the correla-
tions among cognitive scores after recovering the missing values, a 
manifold regularization term is integrated into the framework.  

3) To improve the robustness to noises and outliers, we design a low- 
rank sparse regression model that adopts the nuclear norm as the 
basic metric to measure the regression loss. Moreover, an efficient 
iterative algorithm is developed to solve the optimization of the 
proposed formulation. 

4) We conduct experiments on the ADNI dataset to verify the effec-
tiveness of the proposed method. Experimental results show that the 
features selected by the proposed LSFSIL perform better than previ-
ous methods in most cases for cognitive prediction. 

The rest of this paper is organized as follows: In Section 2, the related 
works are reviewed. In Section 3, we first propose the LSFSIL model and 
then provide the optimization algorithm as well as its computational 
complexity analysis. Experimental results and comparisons with other 
approaches are presented in Section 4. Section 5 presents the discussion 
and Section 6 finally concludes the paper. 

2. Related work 

In this section, we briefly review the related works of machine 
learning methods for computer-aided AD diagnosis. In recent years, 
computer-aided diagnosis techniques based on machine learning ap-
proaches have been widely applied to detect AD at early stages and 
predict the disease progression using neuroimaging data. For example, 
Zhang et al. [24] proposed a multi-modal multi-task method for simul-
taneous AD classification and cognitive score prediction. Duchesne et al. 
[29] employed a robust linear regression model to estimate one-year 
changes in MMSE from MRI. Wang et al. [30] designed a 
high-dimensional kernel regression method to estimate the scores of 
ADAS-Cog and MMSE. As the dimension of neuroimaging data is nor-
mally far larger than the sample size, many dimensionality reduction 
methods that aim to reduce the dimension of data features have been 
proposed [6,31]. Among these methods, with the ability to select the 
discriminative features subset and provide interpretable results, feature 
selection has become a better alternative method in AD diagnosis. For 
example, Zhou et al. [19] built a multi-task learning model with 
ℓ2,1-norm and ℓ1-norm to select feature subsets that are important for 
cognitive score prediction. Cao et al. [20] proposed to model the re-
lationships among cognitive scores and MRI features based on prior 
knowledge to select important features. Zhu et al. [22] designed a 
feature selection method that considers relational information inherent 
in the observations for joint regression and classification in AD 
diagnosis. 

However, the methods mentioned above usually assume each sample 
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has all cognitive scores at all time-points and cannot directly utilize the 
samples with incomplete cognitive scores for training. Some patients do 
not receive cognitive assessments at the agreed time for various reasons 
and these patients have incomplete cognitive scores. For employing the 
samples with incomplete cognitive scores, Liu et al. [25] proposed to 
discard the missing scores at certain time-points and make use of the 
remaining time-points. However, there are often correlations between 
cognitive tests and time-points. For example, it is reported that different 
cognitive tests evaluate some overlapping cognitive abilities [32]. The 
correlations are helpful for improving prediction performance [33,34], 
which will be lost if the missing cognitive scores are discarded. In this 
paper, we propose a sparse matrix decomposition method to decompose 
the incomplete cognitive score matrix into two parts for recovering 
missing scores. Thus, both incomplete labeled samples and the corre-
lations between cognitive tests and time-points can be utilized. 

Meanwhile, the neuroimaging data are usually contaminated by 
various noises and many samples are affected. Adeli et al. [35,36] pro-
posed to take advantage of testing samples as unlabeled data during the 
training phase to deal with noises and outliers simultaneously. Zhu et al. 
[22] exploited relational information inherent in the observations to 
develop a feature selection method robust to noises and outliers. How-
ever, most existing regression methods minimize the regression term 
using the ℓ2 or F-norm, which is sensitive to noises and outliers in the 
data. To enhance the robustness and discrimination of selected features, 
we encode the regression errors using nuclear norm and propose a 
low-rank sparse feature selection method for cognitive score prediction. 
Although several low-rank sparse regression methods have been pro-
posed in machine learning community [37,38], recent progress on 
handling noisy data in AD diagnosis has gone largely unnoticed. Besides, 
these low-rank sparse regression methods can not take advantage of the 
incomplete labeled samples. 

3. Methods 

In this section, we first introduce some notations and model formu-
lation. Next, we describe the LSFSIL model. Then, an iterative optimi-
zation algorithm is presented. Finally, we provide the complexity 
analysis for the proposed method. 

3.1. Notations and model formulation 

For matrix A ∈ Rn×m, the (i, j)-th element, i-th row and j-th column 
are denoted by aij, ai and aj, respectively. The trace and transpose of A 
are tr(A) and AT, respectively. The F-norm of matrix A is 
⃦
⃦
⃦
⃦
⃦

A

⃦
⃦
⃦
⃦
⃦

F

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n
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√
√
√
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The ℓ1-norm of matrix A is 
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The ℓ2,1-norm of matrix A is 
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where σi(A) denotes the i-th singular value of A. The ∞-norm of matrix A 

is. 
⃦
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Let X = [x1, x2,…, xn]
T
∈ ℝn×d describes the MRI feature matrix and 

Y = [y1, y2,…, yn]
T
∈ Rn×c records the corresponding cognitive scores, 

where n is the number of samples, d is the number of features, and c is 
the number of cognitive scores. It is worth noting that several elements 
are missing in Y and the missing elements are recorded as − 1. In this 
paper, we aim to develop a feature selection method that is robust to 
noises and can make full use of incomplete labeled samples. The illus-
tration of LSFSIL is shown in Fig. 1. As shown in Fig. 1, the original 
target matrix Y, which contains the existing and missing cognitive 
scores, is decomposed into two parts: recovered target matrix Z and 
associated error matrix E. Matrix Z is assumed to contain the recovered 
cognitive scores without missing values. That is, the missing elements in 
Y are recovered in Z by the decomposition. The term tr(ZTLZ) guides 
the decomposition of the incomplete cognitive score matrix by ensuring 
that similar subjects have similar recovered cognitive scores. Error 
matrix E records the missing scores and the term 

⃒
⃒
⃒
⃒E
⃒
⃒|1 is utilized to 

constrain its sparsity. Then, the recovered matrix Z is regarded as the 
prediction target and the input feature matrix X is projected into the 
target space by matrix W. The regularizer 

⃦
⃦W‖2,1 is used to select 

informative features across all samples with joint sparsity. Finally, the 
nuclear norm is adopted to characterize the prediction loss. In the 
following subsection, we describe the formulation of LSFSIL in detail. 

3.2. Objective function 

The objective function of feature selection for cognitive score pre-
diction task can be defined as a linear regression model: 

min
W

‖Y − XW‖
2
F + α‖W‖2,1, (6)  

where W ∈ Rd×c is the projection matrix, loss function 
⃦
⃦Y − XW‖

2
F is the 

element-wise difference between the target values and the predicted 
ones, and α is a scalar regularization hyperparameter. The ℓ2,1-norm 
regularization term 

⃦
⃦W‖2,1 penalizes the root sum square of the rows in 

W by making some rows easily shrink to zero so as to select informative 
and important features. 

It is noted that (6) directly utilizes a half-baked cognitive score 
matrix as the regression target. However, in clinical practice, some 
subjects may not have all ground-truth cognitive scores/labels due to 
various reasons. For example, due to time conflict, some subjects could 
not be evaluated as scheduled and the cognitive scores at certain time- 
points are missing. Equation (6) only considers the subjects with com-
plete cognitive scores during training. In this way, the number of 
available training samples is decreased, resulting in the overfitting 
problem [39]. In order to avoid the disturbance of missing cognitive 
scores and make full use of all subjects, we assume that the target matrix 
Y contains two parts, one includes the ground-truth cognitive scores 
without any missing values and the other includes the missing values. 
Accordingly, we decompose target matrix Y into Z+ E, where Z ∈ Rn×c 

represents the recovered cognitive score matrix and E ∈ Rn×c is the 
associated error matrix. We add the ℓ1-norm regularizer on E so as to 
encourage the sparsity of the error matrix. Therefore, we have the 
following objective function 

min
Z,E,W

⃦
⃦
⃦
⃦Z − XW

⃦
⃦
⃦
⃦

2

F
+ α

⃦
⃦
⃦
⃦W

⃦
⃦
⃦
⃦

2,1
+ β

⃦
⃦
⃦
⃦E

⃦
⃦
⃦
⃦

1
s.t. Y = Z + E, (7)  

where β is a regularization parameter. As can be seen, the recovered 
cognitive score matrix Z is used as the regression target in (7). In this 
way, both the subjects with complete cognitive scores and the ones with 
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incomplete cognitive scores can be employed to train the model. 
It is obvious that there is no instruction for the decomposition of the 

target matrix Y in (7). That is, the recovered matrix Z may be arbitrary 
and far away from the real cognitive score matrix. Thus, training the 
model with such an arbitrary Z is not beneficial for performance pro-
motion. To encourage that the recovered cognitive scores are close to the 
real cognitive scores, we preserve the local neighborhood of the cogni-
tive scores after the decomposition. We expect that if samples are close 
to each other in feature space, then their respective recovered cognitive 
scores should be also similar to each other and add a regularization term 
in (7) to preserve the local structure: 

∑

i,j
sij

⃦
⃦
⃦
⃦zi − zj

⃦
⃦
⃦
⃦

2

F
, (8)  

where sij represents the similarity between the i-th subject and the j-th 
subject, which is calculated as 

sij = e−
⃒
⃒
⃒
⃒xi − xj

⃒
⃒
⃒
⃒2

2
σ . (9) 

Equation (9) can be reformulated as tr(ZTLZ), where L is the Lap-
lacian matrix given as Dv − Sv, Dv is a diagonal matrix in which the i-th 
diagonal element is the sum of the i-th row of Sv, and Sv is the similarity 
matrix in which the (i, j)-th element is sij. Then, the objective function 
can be reformulated as 

min
Z,E,W

‖Z − XW‖
2
F + α‖W‖2,1 + β||E‖1 + γtr

(
ZT LZ

)
s.t. Y = Z + E, (10)  

where γ is a regularization hyperparameter. 
It is found that (10) adopts the F-norm that is sensitive to noises to 

measure the regression loss [27,28]. However, MRI data are affected by 

a wide variety of noises in the procedure of acquisition and pre-
processing, which blurs images and disturbs MRI segmentation. Conse-
quently, the partition of some brain regions may be inaccurate, which 
contaminates the features related to these brain regions. The F-norm 
usually fails to build reliable models due to the influence of noises [27]. 
It is known that the nuclear norm, the sum of all singular values of the 
matrix, is more robust to noises than F-norm [28]. This motivates us to 
adopt the nuclear norm to characterize the regression loss. Finally, the 
objective function is formulated as 

min
Z,E,W

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒Z − XW

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
∗

+ α
⃦
⃦
⃦
⃦W

⃦
⃦
⃦
⃦

2,1
+ β

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒E
⃦
⃦
⃦
⃦

1
+ γtr

(
ZT LZ

)

s.t. Y = Z + E.
(11)  

3.3. Optimization 

To solve the nonconvex optimization of (11), we adopt an alternating 
direction method of multipliers (ADMM) algorithm [40]. Relaxation 
variable K is introduced and (1) can be rewritten as 

min
Z,E,W,K

||K||* + α‖W‖2,1 + β‖E‖1 + γtr
(
ZT LZ

)

s.t. Y = Z + E, K = Z − XW.
(12) 

Since that 
⃒
⃒
⃒
⃒K

⃒
⃒|∗ is equivalent to min

P,Q
1
2 (
⃦
⃦P‖2

F +
⃦
⃦Q‖

2
F), P ∈ Rn×r, 

Q ∈ Rr×c, and r ≤ min{n, c} [28], (12) can be converted to the following 
equivalent form 

min ​
Z,E,W,K,P,Q

1
2
( ⃦
⃦P‖2

F +
⃦
⃦Q‖

2
F

)
+ α‖W‖2,1 + β‖E‖1 + γtr

(
ZT LZ

)
.

s.t. Y = Z + E,K = Z − XW,K = PQ. (13) 

Solving (13) is equivalent to minimizing the following augmented 
Lagrange function 

Fig. 1. Illustration of the proposed LSFSIL model. The original target matrix Y is decomposed into two parts: recovered target matrix Z and associated error matrix E. 
Then, the MRI data X are projected into the recovered target matrix Z by ℓ2,1-norm regularized projection matrix W to make use of all available samples and select 
informative features. 
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L =
1
2
( ⃦
⃦P‖2

F +
⃦
⃦Q‖

2
F

)
+ α‖W‖2,1 + β‖E‖1 + γtr

(
ZLZT)

+tr
(
U1

T(Y − Z − E)
)
+ tr

(
U2

T(K − Z + XW)
)
+ tr

(
U3

T(K − PQ)
)

+
μ
2

(⃒
⃒
⃒

⃒
⃒
⃒Y − Z − E‖2

F +
⃒
⃒
⃒
⃒K − Z + XW‖

2
F +

⃒
⃒
⃒
⃒K − PQ‖

2
F

)
,

(14)  

where U1, U2, and U3 are the Lagrange multipliers, and penalty 
parameter μ > 0. In ADMM, the augmented Lagrange function is mini-
mized by solving the subproblems w.r.t. each unknown variable itera-
tively and each subproblem can be solved efficiently. It contains the 
following steps to update all variables in each iteration: 

Step 1. Update K: we fix other variables, and update K by solving the 
following problem 

min
K

tr
(
U2

T(K − Z + XW)
)
+ tr

(
U3

T(K − PQ)
)

+
μ
2
( ⃒
⃒
⃒
⃒K − Z + XW‖

2
F +

⃒
⃒
⃒
⃒K − PQ‖

2
F

) (15) 

By setting the derivative of (15) w.r.t. K to zero, we can obtain its 
optimal solution 

K=
M1 + M2

2
, (16)  

where M1 = Z − XW − U2/μ and M2 = PQ − U3/μ. 

Step 2. Update Z: updating Z by optimizing (14) is equivalent to 
minimizing the following problem 

min
Z

γtr
(
ZT LZ

)
+ tr

(
U1

T(Y − Z − E)
)

+tr
(
U2

T(K − Z + XW)
)

+
μ
2
( ⃒
⃒
⃒
⃒Y − Z − E‖2

F +
⃒
⃒
⃒
⃒K − Z + XW‖

2
F

)
.

(17) 

We take the derivative of (17) w.r.t. Z and set it to zero. Then, we 
obtain 

Z=(2μI + 2γL)− 1
(μR1 + μR2), (18)  

where R1 = Y − E + U1/μ and R2 = K+ XW+ U2/μ. 

Step 3. Update E: after other variables are fixed, E can be calculated 
by solving the following minimization problem 

min
E

β‖E‖1 +
μ
2
||Y − Z − E +

U1

μ ‖
2
F . (19) 

Since that R1 = Y − Z+ U1/μ, (19) can be rewritten as 

min
E

β‖E‖1 +
μ
2
||E − R1‖

2
F. (20) 

Equation (20) has a closed-form solution according to the shrinkage 
operator: 

E= Sβ
μ
(R1), (21)  

where Sη(x) = sign(x)max(|x| − η,0). 

Step 4. Update W: after other variables are fixed, we can calculate W 
by solving the following problem 

min
W

α‖W‖2,1 +
μ
2
||K − Z + XW +

U2

μ ‖
2
F. (22) 

Let D = Z − K − U2/μ, we have 

α
⃦
⃦
⃦
⃦W

⃦
⃦
⃦
⃦

2,1
+

μ
2

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒K − Z + XW

+
U2

μ

⃦
⃦
⃦
⃦

2

F
= α

⃦
⃦
⃦
⃦W

⃦
⃦
⃦
⃦

2,1
+

μ
2

⃒
⃒
⃒

⃒
⃒
⃒XW − D

⃦
⃦
⃦
⃦

2

F
= α‖W‖2,1 +

μ
2

tr
(
(XW − D)

T 

(XW − D)
)
= αtr

(
WT GW

)
+

μ
2

tr
(
WT XT XW + DT D − 2DT XW

)
, (23)  

where G is the diagonal matrix with the i-th diagonal element gii =

1/2
⃒
⃒
⃒
⃒wi

⃒
⃒|2. Then, (22) can be rewritten as 

min
W

αtr
(
WT GW

)
+

μ
2

tr
(
XT XWWT − 2DT XW

)
. (24) 

By setting the derivative of (24) w.r.t. W to zero, we can obtain its 
optimal solution 

W= μ
(
2αG + μXT X

)− 1XT D. (25)   

Step 5. Update P: with other variables fixed, P can be solved by 
solving the following problem 

min ​
P

1
2

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒P
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒

2

F
+

μ
2

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒K − PQ +

U3

μ

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒

2

F
. (26) 

By setting the derivative of (26) w.r.t. P equal to zero, it is obvious 
that 

P= μ
(

K+
U3

μ

)

QT ( I + μQQT)− 1
. (27)   

Step 6. Update Q: after other variables are fixed, we can obtain Q by 
solving the following problem 

min
P

1
2

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒Q

⃦
⃦
⃦
⃦

2

F
+

μ
2

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒K − PQ +

U3

μ

⃦
⃦
⃦
⃦

2

F
. (28) 

Similar to the optimization strategy of P, we can get the closed-form 
solution of problem (28) 

Q= μ
(
I + μPT P

)− 1PT
(

K+
U3

μ

)

. (29)   

Step 7. the Lagrange multipliers and the penalty factor are updated 
as 

U1 = U1 + μ(Y − Z − E),
U2 = U2 + μ(K − Z + XW),

U3 = U3 + μ(K − PQ),

μ = min(ρμ, μmax),

(30)  

where ρ > 1 and μmax are manually set constants. 
Convergence criteria. The ADMM algorithm solves the original 

objective function by solving a sequence of subproblems w.r.t. each 
unknown variable iteratively. It is important to adopt proper stopping 
criteria for achieving the optimal solution. Following the suggestions in 
Ref. [40], the stopping criteria are defined as 
⃒
⃒
⃒
⃒Y − Z − E

⃒
⃒
⃒
⃒

∞ < ε,
⃒
⃒
⃒
⃒K − Z + XW

⃒
⃒
⃒
⃒

∞ < ε,
⃒
⃒
⃒
⃒K − PQ

⃒
⃒
⃒
⃒

∞ < ε,
(31)  
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where ε > 0 is a small tolerance error. 

Algorithm 1. Solving (11) by ADMM 

3.4. Computational analysis 

Here, we analyze the computational cost of Algorithm 1. We assume 
that the number of iterations for ADMM is τ. The major computational 
complexity lies on Step 1, Step 2, and Step 4. The major computational 
complexity for Step 1, Step 2, and Step 4 are O (ndc + nrc), O (n3 + ndc +

n2c), and O (nd2 + d3 + ndc), respectively. Then, the computational 
complexity of Algorithm 1 is O (τ(n3 + n2c + ndc + d3)). As c≪ d and 
c≪n, the total complexity is O (τ(n3 + d3)). 

4. Results 

In this section, the experimental dataset, comparison methods, and 
experimental settings are firstly described. Then, the LSFSIL algorithm is 
compared with its variants and state-of-the-art methods. 

4.1. Dataset 

The ADNI dataset (http://adni.loni.usc.edu) [41] is used to validate 
the performance of LSFSIL. The ADNI project was launched in 2003 by 
the National Institute on Aging, the National Institute of Biomedical 
Imaging and Bioengineering, the Food and Drug Administration. Its 
primary goal is to test whether clinical, imaging, genetic, and 
biochemical biomarkers can be used to detect AD at the earliest possible 
stage. The ADNI project is a longitudinal study, in which biomarkers and 
cognitive scores are collected every 6 or 12 months. We aim to infer 

three clinical assessments: ADAS-Cog, MMSE, and CDR-SB, at four 
time-points given the baseline MRI scans. The four ime-points include 
baseline (BL), 6 months (M06), 12 months (M12), and 24 months (M24) 
after BL. To provide a high degree of reproducibility, we adopt the MRI 
features extracted by a team from University of California at San Fran-
cisco (data acquired from http://adni.loni.usc.edu/). They perform 
cortical reconstruction and volumetric segmentation with the FreeSurfer 
image analysis suite (http://surfer.nmr.mgh.harvard.edu/). 
Pre-processed ADNI1 1.5T T1 weighted image data in NiFTI format 
(warping, scaling, B1 correction and N3 inhomogeneity correction) are 
run with FreeSurfer version 4.3. Each scan is processed by the following 
steps: 

Step 1: In this step, 1) motion correction and registration, 2) non- 
uniform intensity normalization, 3) talairach transform computa-
tion, and 4) intensity normalization and skull strip are initiated. Step 
2: This step creates the white-matter and pial surfaces and then 
segments the gray and white matter, and the sub-cortical structures. 
Step 3: cortical parcellation is created in this step. 

The cortical volume (CV), surface area (SA), cortical thickness 
average (TA), and standard deviation of thickness (TS) of cortical re-
gions and subcortical regions are extracted as features. Meanwhile, total 
intracranial volume (ICV) and left and right hemisphere SA are also 
extracted. We remove the features with missing entries and a total of 327 
MRI features are used in our experiments. 

We use 814 subjects from the ADNI dataset, including 227 normal 
controls (NC), 397 MCI subjects, and 190 AD subjects. The detailed in-
formation of these subjects is summarized in Table 1. Among them, some 
subjects may miss ground-truth cognitive scores at certain time-points. 
We list the number of subjects with three types of cognitive assess-
ments at four time-points in Table 2. 

4.2. Algorithms for comparison 

The LSFSIL method is compared with the following existing 
approaches:  

● SVR: In this method, the support vector regression (SVR) is trained 
using the original MRI features without feature selection to infer the 
cognitive scores.  

● MSL [21]: In this method, a matrix similarity-based regularizer is 
designed to take into account the relations between labels and be-
tween samples.  

● L2PSC [42]: It uses ℓ2,p-norm to measure loss and select features. 
Moreover, a regularizer is introduced to preserve local structure in-
formation between samples and labels.  

● RRFS [22]: In RRFS, relational regularizers, which incorporate 
feature-feature relation, sample-sample relation, and 
response-response relation, are combined with a ℓ2,1- norm regu-
larizer for feature selection. 

● RRDSL [43]: RRDSL is a discriminative learning method that in-
corporates relational information to explore the relations among 
features and training subjects.  

● CSL [6]: In CSL, correlation-aware ℓ1-norm is developed to explore 
the relations between imaging markers and cognitive scores for 
selecting informative features. 

We also compare LSFSIL with three state-of-the-art semi-supervised 
feature selection methods:  

● SFSGL [44]: SFSGL exploits graph Laplacian-based scatter matrix to 
make use of both labeled and unlabeled samples for feature selection 
in regression problems. 

Table 1 
The detailed demographic information and clinical characteristics of subjects.   

Normal MCI AD 

Gender 118/109 256/141 100/90 
Age(mean ± std) 76.0 ± 5.0 74.8 ± 7.4 75.3 ± 7.5 
Edu(mean ± std) 16.0 ± 2.9 15.6 ± 3.0 14.7 ± 3.1 
ADAS-Cog(mean ± std) 9.5 ± 4.2 18.5 ± 6.5 28.3 ± 8.8 
MMSE(mean ± std) 29.1 ± 1.0 27.0 ± 1.8 23.3 ± 2.0 
CDRSB(mean ± std) 0.0 ± 0.1 1.6 ± 0.9 4.3 ± 1.6  
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● GSFS [45]: GSFS applies ℓ2,p-norm on both loss function and regu-
larization for utilizing labeled and unlabeled data based on manifold 
regularization.  

● FSLCLC [46]: FSLCLC adopts the low-rank matrix factorization on 
the label matrix to compress labels and recover the missing labels. 

Table 3 summarizes the advantages of LSFSIL over existing ap-
proaches. As illustrated in Table 3, only LSFSIL can take advantage of 
incomplete labeled samples and the remaining scores in incomplete 
labeled samples simultaneously. Besides, LSFSIL adopts the nuclear 
norm to encode the regression errors, which is robust to noises and 
outliers. 

Besides, we compare LSFSIL with its variants to further validate the 
effectiveness of each component in LSFSIL.  

● LSFSIL-S: It does not utilize subjects with incomplete cognitive 
scores.  

● LSFSIL-R, LSFSIL-E, and LSFSIL-E: The three variants discard the 
second term, third term and fourth term in LSFSIL, respectively. 

4.3. Experimental settings 

We normalize all features by subtracting the minimum value and 
dividing the result by the difference between the maximum value and 
the minimum value so that all feature values are between 0 and 1. All 
cognitive scores are normalized (subtracted the maximum value) to 
avoid different response scales. Two metrics, i.e., root mean square error 
(RMSE) and correlation coefficient (CC), are employed for performance 
evaluation. 

As a convention [21,22], we use the SVR model with a linear kernel 
to evaluate the features selected by each algorithm. Default values for 
the SVR are used for both training and testing phases. The number of 
features is {2, 4, 6, …, 16, 18, 20} since there is no further performance 
improvement for larger values. We finetune parameters α, β, and γ by a 
grid-search strategy from {10− 4,10− 3,…,103,104}. We use the five-fold 
cross-validation to evaluate all approaches. It means that all samples are 
equally divided into five portions. The samples in one portion are suc-
cessively chosen as the testing data, and the rest are utilized as the 
training data. For semi-supervised methods (SFSGL, GSFS, and FSLCLC) 
and our proposed LSFSIL, all samples in the training set are used for 
training. For other methods, only the samples with complete cognitive 
scores can be used for training. When the training is finished, we check 
the prediction performance of the selected features in cognitive score 
prediction using the support vector regression (SVR) model. Specifically, 
a linear SVR model is trained with the selected features for each 
cognitive score and each method. For a fair comparison, we train the 
SVR models using the complete labeled samples for all methods. Then, 
the trained SVR is adopted to predict the scores of each sample in the 
testing set (only samples that have ground-truth scores can be pre-
dicted). The results of each fold are averaged. We repeat the whole 
process 10 times to avoid possible bias during dataset partitioning for 
cross-validation. All experiments are implemented with Python and 
conducted on an Intel Core (TM) i3-8100 CPU with 3.6 GHz processing 
speed and 8 GB main memory. Our code has been released at http 
s://github.com/chenz96/LSFSIL. 

Table 2 
The number of subjects with three types of cognitive scores (i.e., ADAS-Cog, MMSE, and CDR-SB) at four time-points (i.e., BL, M06, M12, and M24).   

ADAS-Cog MMSE CDR-SB 

BL M06 M12 M24 BL M06 M12 M24 BL M06 M12 M24 

Normal 227 219 206 199 227 219 209 201 227 215 205 196 
MCI 394 374 354 299 397 378 356 302 397 378 356 300 
AD 186 172 156 123 190 179 161 135 190 178 159 134  

Table 3 
Comparison of LSFSIL with existing approaches. SFSGL is a linear discriminant 
analysis method and utilized a trace operation based objective function.   

Does the method 
utilize incomplete 
labeled samples? 

Does the method utilize 
the remaining scores in 
incomplete labeled 
samples? 

The norm used to 
encode the 
regression errors 

MSL   F-norm 
L2PSC   ℓ2,p-norm 
RRFS   F-norm 
RRDSL   F-norm 
CSL   F-norm 
SFSGL ✓  – 
GSFS ✓  ℓ2,p-norm 
FSLCLC ✓  F-norm 
LSFSIL ✓ ✓ Nuclear norm  

Fig. 2. SVR prediction results of the comparing feature selection methods with varying numbers of selected features on the ADNI dataset. SVR in the legend means 
the SVR model on all features. The mean (a) RMSE and (b) CC are reported for each number of selected features. 
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4.4. Experimental results 

Fig. 2 shows the variation of results of different methods with 
different numbers of selected features and we have the following 
observation. First of all, it is clear that, with the limited features, LSFSIL 
is superior to other approaches in terms of RMSE and CC, which dem-
onstrates its effectiveness in cognitive score prediction. Moreover, the 
performance of these feature selection methods is not always improved 
as the number of selected features increases. As seen from Fig. 2, the 
performance of feature selection methods decreases slightly after 
reaching their peaks, showing that more features contain redundancy 
and noises in the selected feature subset. If we further increase the 
number of features, redundant and noisy features are selected, which 
may yield inaccurate modeling between MRI features and cognitive 
scores and then degrade prediction performance. However, the perfor-
mance of LSFSIL decreases more significantly than other methods. The 
reason is that, for LSFSIL, almost all of the discriminative and key fea-
tures that play important roles in the prediction task have been selected 
when the performance reaches its peak. If we further increase the 
number of selected features, redundant and noisy features are inevitably 
selected, which decreases the prediction performance. As a result, our 
method has an obviously local optimal performance. For other methods, 
several important features have not been selected at the peak. As we 
continue to increase the number of selected features, these important 
features that are previously omitted may be selected. Therefore, after 
reaching the peak, the performance degradation of other methods is 
smaller than that of our method. Besides, almost all feature selection 
methods outperform the baseline method, i.e., SVR. This can be attrib-
uted to the fact that the redundant and noisy features in MRI data cause 
interference to the prediction model. The superior performance of 
feature selection methods demonstrates that they remove these features 
and select discriminative features. Consequently, it is necessary to select 
informative features before performing the cognitive score prediction. 
Compared with other semi-supervised methods (GSFS, SFSGL, and 
FSLCLC), LSFSIL yields better RMSE and CC. The reason may be that 
other semi-supervised methods are devised for the single-task learning 
problem. That is, these methods do not consider the correlations among 
cognitive scores in their formulations. In contrast, LSFSIL explores the 
correlations among cognitive scores with the Laplacian regularization 
term. 

Tables 4 and 5 report the RMSE and CC results of different methods 
with top-10 selected features, respectively. As can be seen, LSFSIL out-
performs all the other feature selection methods in terms of RMSE and 
CC. For example, the average RMSE and CC values of LSFSIL are 0.1323 
and 0.5940, respectively. The results of the best comparison method (i. 
e., L2PSC) are 0.1337 and 0.5900, respectively, and those of the worst 
one (i.e., SVR) are 0.1617 and 0.4742, respectively. Besides, the per-
formance of all methods decreases overtime. For example, LSFSIL ob-
tains an RMSE value of 0.1454, which is higher than that at BL (i.e., 
0.1329) in predicting ADAS-Cog scores at M24. The reason may be that 
we use the MRI data at BL to predict the scores at four time-points but 

the brain structure may slightly change over time after BL and the in-
dividual differences in patients, such as age and education, may influ-
ence the progression of cognitive function. Therefore, it is reasonable 
that the performance slightly decreases overtime. Moreover, a paired t- 
test [47] at a significance level of 0.05 is performed to determine 
whether the performance differences between LSFSIL and the other 
feature selection methods are significant. We mark statistically signifi-
cant differences with the superscript symbol *. As can be seen, LSFSIL is 
statistically better than SVR, MSL, RRDSL, RRFS, CSL, SFSGL, GSFS, and 
FSLCLC, and is at least comparable to L2PSC. 

We list the RMSE and CC values of LSFSIL and its variants, i.e., 
LSFSIL-S, LSFSIL-R, LSFSIL-E, and LSFSIL-M in Table 6. As can be seen, 
LSFSIL achieves better performance than its variants. In LSFSIL-S, the 
subjects with incomplete cognitive scores are discarded. In contrast, 
LSFSIL employs these subjects by clinical score matrix decomposition 
and therefore the relations between MRI features and clinical scores can 
be better described with more samples. Compared with LSFSIL-R, LSFSIL 
employs the ℓ2,1-norm to make W is sparse in rows. In this way, the most 
relevant features can be selected according to the norms of the rows in W 
and the performance can be improved. In LSFSIL-E, since the error 
matrix is unconstrained, its most elements are nonzero. However, only 
part of the clinical scores are missing and the existing clinical scores may 
be affected by the corresponding elements in the error matrix. As a 
result, the performance of LSFSIL-E is lower than that of LSFSIL. 
Compared with LSFSIL-M, LSFSIL adopts the manifold regularization 
term to guide similar subjects to own similar denoised cognitive scores. 
In this way, the local neighborhood of the cognitive scores is preserved 
in LSFSIL and therefore LSFSIL provides superior performance in feature 
selection. 

5. Discussion 

In this section, we first analyze the parameter sensitivity and 
convergence of LSFSIL. Then we show the discriminative brain regions 
identified by LSFSIL. Finally, we analyze the limitations and possible 
future directions of our work. 

5.1. Parameter analysis and convergence analysis 

Fig. 3 shows the performance variety under different α and the 
number of selected features when β and γ are fixed to 10− 4 and 10− 3, 
respectively. As can be seen, as parameter α increases, the performance 
first increases and then decreases. When α is small, the ℓ2,1-norm reg-
ularization has little effect on W and W is not sparse in rows. Therefore, 
it is difficult to select important features based on W. 

W. On the other hand, W is excessively sparse and all elements are 
mostly close to zero if α is too large, which makes it is no sense to select 
the features according to W. According to Fig. 3, parameter α is set to 
10− 3. Under the condition of parameters α = 10− 3 and γ = 10− 3, the 
RMSE and CC results w.r.t. the number of selected features under the 
varying β are shown in Fig. 3. We observe that the prediction 

Table 4 
Prediction performance measured by RMSE. Superscript symbol * indicates that LSLFSIL significantly outperformed that method. Paired t -test at a level of 0.05 is used.  

Method ADAS-Cog MMSE CDR-SB Avg. 

BL M06 M12 M24 BL M06 M12 M24 BL M06 M12 M24 

SVR 0.1710 0.1614 0.1620 0.1867 0.0797 0.1102 0.1437 0.1712 0.2120 0.1676 0.1820 0.1933 0.1617* 
MSL 0.1376 0.1333 0.1341 0.1502 0.0781 0.1021 0.1162 0.1479 0.1743 0.1386 0.1459 0.1713 0.1358* 
L2PSC 0.1359 0.1302 0.1305 0.1474 0.0779 0.1013 0.1130 0.1417 0.1748 0.1380 0.1460 0.1675 0.1337 
RRDSL 0.1372 0.1342 0.1336 0.1516 0.0780 0.1021 0.1165 0.1482 0.1737 0.1388 0.1455 0.1706 0.1358* 
RRFS 0.1351 0.1316 0.1326 0.1494 0.0775 0.1019 0.1148 0.1431 0.1759 0.1383 0.1479 0.1704 0.1349* 
CSL 0.1408 0.1365 0.1357 0.1499 0.0785 0.1021 0.1163 0.1442 0.1802 0.1404 0.1479 0.1713 0.1370* 
SFSGL 0.1491 0.1453 0.1446 0.1642 0.0805 0.1061 0.1252 0.1631 0.1845 0.1445 0.1526 0.1807 0.1450* 
GSFS 0.1557 0.1502 0.1499 0.1731 0.0830 0.1085 0.1282 0.1668 0.1917 0.1513 0.1599 0.1927 0.1509* 
FSLCLC 0.1559 0.1504 0.1506 0.1663 0.0832 0.1084 0.1294 0.1652 0.1914 0.1507 0.1610 0.1891 0.1501* 
LSFSIL 0.1329 0.1297 0.1291 0.1454 0.0762 0.1003 0.1128 0.1426 0.1730 0.1363 0.1442 0.1655 0.1323*  
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performance decreases with respect to parameter β. The reason may be 
that when β is too larger, E is excessively sparse and the recovered 
cognitive score matrix Z is very close to the original matrix Y. Thus, it is 
no sense to optimize the loss function with Z as the target. Here, we set 
parameter β to 10− 4. We also show the prediction performance of γ and 
the number of selected features when α and β are fixed to 10− 3 and 10− 4 

in Fig. 3. LSFSIL is robust to parameter γ in a wide range, i.e., γ ∈ [10− 4,

10− 2]. When γ is too large, the performance of LSFSIL is significantly 
degraded. The reason may be that a large γ reduces the effects of other 
terms on the objective function and the selected features are not relevant 

to the task. 
Here, we set γ to 10− 3. 
Then, we experimentally explore the convergence of Algorithm 1. 

Fig. 4 shows the variation of the residual value with the increase of it-
erations. From Fig. 4, we can observe that the residual values reach a 
convergence within 200 iterations. The experimental results in Fig. 4 
demonstrate the convergence of the proposed optimization algorithm. 

5.2. Top selected brain regions 

We analyze the top selected brain regions by LSFSIL. The brain re-
gions with top occurrence frequency in all cross-validation are shown in 
Fig. 5. Some important brain regions are selected, such as hippocampus 
[48], middle temporal [49], entorhinal [50], and corpus callosum [51]. 
These ROIs are known to be highly related to AD and cognitive 
impairment in many previous studies. For example, the size of the hip-
pocampus can be used to predict whether MCI will progress into AD 
[48]. Patients with temporal lobe epilepsy usually suffer significant 
memory deficits that appear similar to those seen in amnestic MCI [49]. 
Desikan et al. found that hippocampus volume and entorhinal cortex 

Table 5 
Prediction performance measured by CC. Superscript symbol * indicates that LSLFSIL significantly outperformed that method. Paired t -test at a level of 0.05 is used.  

Method ADAS-Cog MMSE CDR-SB Avg. 

BL M06 M12 M24 BL M06 M12 M24 BL M06 M12 M24 

SVR 0.4517 0.5012 0.5055 0.5521 0.454 0.4534 0.3974 0.5327 0.4076 0.4379 0.4318 0.565 0.4732* 
MSL 0.5972 0.6015 0.5991 0.6248 0.4923 0.5287 0.55 0.586 0.5436 0.5579 0.5625 0.5799 0.5776* 
L2PSC 0.6051 0.6246 0.6223 0.6417 0.4942 0.5349 0.5799 0.6219 0.5354 0.5528 0.5552 0.6035 0.5900 
RRDSL 0.5991 0.599 0.6048 0.6207 0.494 0.5332 0.5457 0.5854 0.5488 0.5591 0.5608 0.5904 0.5791* 
RRFS 0.6105 0.6099 0.6056 0.6285 0.4958 0.5265 0.5581 0.6083 0.527 0.544 0.5349 0.5841 0.5784* 
CSL 0.5736 0.5812 0.591 0.6321 0.4845 0.534 0.553 0.6141 0.5058 0.5451 0.5537 0.5974 0.5728* 
SFSGL 0.5072 0.5105 0.5052 0.5286 0.4246 0.4352 0.4041 0.3775 0.4711 0.4867 0.4957 0.506 0.4700* 
GSFS 0.4131 0.4263 0.4342 0.4385 0.3294 0.3709 0.3394 0.318 0.3923 0.4062 0.4196 0.4175 0.3911* 
FSLCLC 0.4115 0.4354 0.4312 0.5025 0.3402 0.3827 0.3059 0.3353 0.3899 0.4129 0.3983 0.4392 0.3978* 
LSFSIL 0.6272 0.6273 0.6312 0.649 0.529 0.5519 0.5821 0.6236 0.5496 0.574 0.5682 0.6142 0.5940  

Table 6 
Prediction performance of LSFSIL and its variants measured by RMSE and CC.  

Method RMSE CC 

LSFSIL-S 0.1356 0.5647 
LSFSIL-R 0.1607 0.2700 
LSFSIL-E 0.1340 0.5840 
LSFSIL-M 0.1330 0.5909 
LSFSIL 0.1323 0.5940  

Fig. 3. Average prediction performance of LSFSIL versus hyperparameters on the ADNI dataset. The y-axis represents α, β, and γ (from left to right), while x-axis 
represents the number of the selected features, and z-axis represents (a) RMSE and (b) CC. 
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thickness can be used to identify MCI and AD individuals with high 
accuracy [50]. These results show that our findings are consistent with 
the results reported in previous studies [48–51], demonstrating the 
effectiveness of LSFSIL in identifying related features relevant to 
cognitive impairment. 

5.3. Limitations and future directions 

There are still several limitations in LSFSIL. First, we build the pre-
diction model based on a single modality. Multi-modality data provide 
complementary information to each other and may help to promote 
prediction performance [53,54]. One important future direction is to 
develop regularization terms that can utilize the complementary and 
consensus properties of multi-modality data for the cognitive score 
prediction task. Besides, we assume that the features related to different 
cognitive assessments are the same. However, different assessments may 
prefer different features. For example, ADAS-Cog includes several 
additional assessment components targeting memory, praxis, and lan-
guage compared with MMSE [11]. In future, we will focus on learning an 

assessment-specific projection matrix for each assessment so as to select 
an assessment-specific feature subset. 

6. Conclusions 

In this paper, we propose a new feature selection method named 
LSFSIL for AD progression prediction with incomplete cognitive scores, 
which is different from most existing methods that only employ the 
subjects with complete cognitive scores. To make full use of all available 
samples, we recover the real cognitive scores by decomposing the input 
original target matrix into two parts. The former is assumed to be the 
real cognitive score matrix without missing values and is regarded as the 
regression target. The latter is a matrix regularized by ℓ1-norm for 
characterizing recovery errors. A manifold regularization term is 
developed to guide the decomposition by ensuring that similar subjects 
own similar recovered cognitive scores. Experimental results for the 
ADNI dataset suggest the superiority of our method in cognitive score 
prediction. Besides, we identify some important brain regions consistent 
with the previous studies. 
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Fig. 4. Convergence curve of Algorithm 1 on the ADNI dataset.  
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